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ABSTRACT

Groundwater contribution to streamflow in the form of base flow was

estimated for 78 drainage basins in Illinois using the graphical hydrograph

separation technique applied by Walton [1965] in a precursory investigation.

Base flow probability distributions were determined for each basin during high

streamflows (10% flow-duration), median streamflows (50% flow-duration), and

low streamflows (90% flow-duration) based on the analysis of the most recent

10 to 20 years of historical records. The results were presented in the form

of log10-probability curves defining the base flow probability distribution

for each basin over the range of streamflows from the 10% flow to the 90%

flow. The statewide distributions of median base flow values at each of the

three flows studied were mapped and regional divisions were drawn. Median

base flow per square mile of drainage area generally increases from the

southwest to the northeast at all three flow-durations. Highest values were

found in the heavily urbanized Chicago metropolitan area and the driftless

area in extreme southern Illinois. Lowest values generally coincided with the

"claypan" area in the southwest and south-central parts of the state.

Numerous factors exert their effects on the regional distribution of base flow

including but not limited to land use, point source discharges, surficial soil

permeability, basin topography, and climatology.
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It is a popular albeit mistaken notion that surface water and groundwater

are distinct entities separated by an imaginary barrier at the land-water

interface. While it may be convenient to consider water which is visible

apart from that which is hidden from sight, the water itself does not

recognize this division. Driven by the force of gravity, water continually

moves between the land surface and the subsurface environments. Our knowledge

of this process is limited by the large number of interdependent factors

involved. A better understanding of these factors and their effects is needed

if we are to effectively manage our water resources in a comprehensive manner.

This study addresses the problem by quantifying the groundwater contribution

to streamflow over a large range of discharges for 78 watersheds in Illinois.

Quantification is the first step toward understanding the dynamics of this

complex phenomenon.

In a precursory investigation, Walton [1965] studied the relationship

between annual precipitation and groundwater runoff in Illinois on a statewide

basis. The effects of basin characteristics on groundwater discharges were

determined for years representing "above average," "near average," and "below

average" precipitation. The results of that study were presented in the form

of maps indicating the areal distribution of annual groundwater runoff for

each climatic condition.

The purpose of this study is to more accurately define the quantity and

quality of groundwater runoff, or base flow, for a range of streamflow rates,

basin sizes, and regions of the state. It also is intended to provide

information needed to advance the decision-making process with respect to the

management of both surface water and groundwater supplies in Illinois. The

INTRODUCTION
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data will be helpful in developing our understanding of the effects of point

and non-point discharges on surface water quality by providing reasonable

estimates of groundwater discharge that can be applied to mass-balance

equations or pollutant dispersion models.

The specific objectives of this project are to:

1) Develop probability curves for total flow and base flow at 78 gaging

stations in Illinois having watersheds from 25 to 1000 square miles in area.

The study stations were required to have 10 to 20 years of mean daily

discharge measurements with the latest record no more than 10 years old.

2) Relate the quantity of base flow to regional hydrologic and geologic

properties by grouping them into physiographic or other logical divisions.

3) Select one basin to evaluate the relationship between stream water

quality and groundwater quality, especially the effects of direct surface

runoff on the quality of the receiving stream.

This report presents the data and summary discussions related to the first

two objectives of the project. The third objective is addressed in a

companion report entitled "Surface Water - Groundwater Quality Relationships"

by Gibb and O'Hearn.

Acknowledgments. The authors are grateful for the cooperation of G. Wayne

Curtis, U. S. Geological Survey, Champaign, Illinois, in providing the

streamflow data without which this study would not have been possible. The

authors also wish to thank Anne Bogner, student Systems Analyst at the

Illinois State Water Survey for her invaluable assistance in generating the

computer-plotted streamflow hydrographs and performing statistical analysis of
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flow separations, data tabulation, and plotting of base flow probability
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by Linda Riggin, William Motherway, and John Brother. Debbie Hayn typed the

draft and final manuscripts and Loreena Ivens edited the final manuscript.
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DESCRIPTION OF DATA BASE

The U. S. Geological Survey and the State Water Survey, Division of Water

Resources, and Division of Highways have had cooperative agreements for the

systematic collection of streamflow measurements since 1930. Mean daily

streamflow in cubic feet per second is recorded at approximately 200 gaging

stations in Illinois. Computer tapes of mean daily flows and flow-duration

data were provided by the U. S. Geological Survey, Champaign, Illinois, for

the 78 stations selected for study, The selected stations have drainage

basins 25 and 1000 square miles in area. They also have a minimum 10 years of

mean daily discharge measurements with the most recent data no more than 10

years old.

Table 1 lists the gaging stations used in this study. Figure 1 shows the

locations of these stations.



Station
number

419000

513000

512500

495500

599000

556500

600000

596000

597000

551700

336500

378000

612000

468500

438250

597500

582500

558500

559500

529000

532500

584400

540500

566500

466500

466000

444000

343400

562000

560500

551200

574500

Table 1. Gaging Station Data Used in This Study.

Station name

Apple River near Hanover

Bay Creek at Nebo

Bay Creek at Pittsfield

Bear Creek near Marcelline

Beaucoup Creek near Matthews

Big Bureau Creek at Princeton

Big Creek near Wetaug

Middle Fork Big Muddy River near Benton

Big Muddy River at Plumfield

Blackberry Creek near Yorkville

Bluegrass Creek at Potomac

Bonpas Creek at Browns

Cache River at Forman

Cedar Creek at Little York

Coon Creek at Riley

Crab Orchard Creek near Marion

Crane Creek near Easton

Crow Creek (W) near Henry

Crow Creek near Washburn

Des Plaines River near Des Plaines

Des Plaines River at Riverside

Drowning Fork at Bushnell

DuPage River at Shorewood

East Branch Panther Creek at El Paso

Edwards River near New Boston

Edwards-River near Orion

Elkhorn Creek near Penrose

Embarras River at Camargo

Farm Creek at East Peoria

Farm Creek at Farmdale

Ferson Creek near St. Charles

Flat Branch near Taylorville

Drainage area
(sq mi)

247

161

39.4

349

292

196

32.2

502

794

70.2

35.0

228

244

130

85.1

31.7

26.5

56.2

115

360

630

26.3

324

30.5

445

155

146

186

61.2

27.4

51.7

276

Period of
record used

1957-76

1957-76

1957-76

1957-76

1957-76

1957-76

1952-71

1951-70

1957-76

1961-76

1952-71

1957-76

1957-76

1952-71

1962-76

1957-76

1955-74

1952-71

1952-71

1957-76

1957-76

1961-76

1957-76

1957-76

1957-76

1957-76

1957-76

1961-76

1957-76

1957-76

1961-76

1957-76

-6-
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Station
number Station name

Drainage area Period of
(sq mi) record used

502040 Hadley Creek at Kinderhook 72.7 1954-73

469000 Henderson Creek near Oquawka 432 1957-76

539000 Hickory Creek at Joliet 107 1957-76

380475 Horse Creek near Keenes 97.2 1959-76

588000 Indian Creek at Wanda 36.7 1957-76

568800 Indian Creek near Wyoming 62.7 1960-76

525000 Iroquois River at Iroquois 686 1957-76

580500 Kickapoo Creek near Lincoln 306 1952-71

563500 Kickapoo Creek at Peoria 297 1952-71

580000 Kickapoo Creek at Waynesville 227 1957-76

440500 Killbuck Creek near Monroe Center 117 1952-71

438500 Kishwaukee River at Belvidere 538 1957-76

579500 Lake Fork near Cornland 214 1957-76

584500 La Moine River at Colmar 665 1957-76

536290 Little Calumet River at South Holland 205 1957-76

378900 Little Wabash River at Louisville 745 1966-76

567500 Mackinaw River near Congerville 767 1957-76

587000 Macoupin Creek near Kane 868 1957-76

542000 Mazon River near Coal City 455 1957-76

448000 Mill Creek at Milan 62.4 1957-76

564400 Money Creek near Towanda 49.0 1959-76

536000 North Branch Chicago River at Niles 100 1957-76

586000 N. Fk. Mauvaise Terre Ck. near Jacksonville 29.1 1956-75

346000 North Fork Embarras River near Oblong 319 1957-76

548280 Nippersink Creek near Spring Grove 192 1967-76

586800 Otter Creek near Palmyra 61.1 1960-76

467000 Pope Creek near Keithsburg 183 1967-76

550500 Poplar Creek at Elgin 35.2 1957-76

439500 South Branch Kishwaukee River near Fairdale 387 1957-76

576000 South Fork Sangamon River near Rochester 867 1957-76

382100 South Fork Saline River near Carrier Mills 147 1966-76



-8-

Station
number

Table 1. Concluded

Drainage area
Station name (sq mi)

Period of
record used

469500 South Henderson Creek at Biggsville 82.9 1952-71

57850 Salt Creek near Rowell 335 1957-76

531500 Salt Creek at Western Springs 114 1957-76

336900 Salt Fork near St. Joseph 134 1959-76

571000 Sangamon River at Mahomet 362 1957-76

572000 Sangamon River at Monticello 550 1957-76

594000 Shoal Creek near Breese 735 1957-76

380500 Skillet Fork at Wayne City 464 1957-76

577500 Spring Creek at Springfield 107 1957-76

581500 Sugar Creek near Hartsburg 333 1952-71

525500 Sugar Creek at Milford 446 1957-76

536275 Thorn Creek at Thornton 104 1957-76

554500 Vermilion River at Pontiac 579 1957-76

539900 West Branch DuPage River near West Chicago 28.5 1962-76

592300 Wolf Creek near Beecher City 47.9 1959-76
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Figure 1. Gaging station location map
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METHODOLOGY

Hydrologists have studied base flow recession and hydrograph separation

techniques for more than one hundred years. Hall [1968] presented a

comprehensive review and historical perspective of previous base flow

studies. Historically, approaches to hydrograph analysis have been developed

using graphical, empirical, or analytical methods. These methods exhibit

varying degrees of sophistication, and the choice of a method is usually

dependent upon the amount of data to be analyzed and the degree of accuracy

desired. Generally, the more sophisticated the technique employed, the more

cumbersome and impractical the method becomes when applied to a large number

of long historical streamflow records, as is the case in this investigation.

Since base flow during storm events can not be measured directly, it is

impossible to determine if the added expense of time and money required by the

more sophisticated methods is justified by increased accuracy of the results.

For this reason, many hydrologists prefer graphical or empirical techniques

for estimating base flow.

The method applied in this study is basically the same as that used by

Walton [1965] and first proposed by Linsley and others [1958]. It is a simple

graphical technique, yet the authors believe that it gives reasonable

estimates of actual base flow values. The statistical base flow parameters

derived by this method are representative of the base flow regimes during the

periods of record analyzed.

For the purpose of this investigation, streamflow consists of two

components: surface runoff, or that amount of precipitation that enters the

stream without percolating into the soil, and base flow, or that precipitation

which infiltrates into the soil and eventually seeps into the channel.

Release of bank storage is included in the base flow component.



-11-

For each of the 78 basins studied, a minimum of 10 years and maximum of 20

years of mean daily discharge measurements were plotted on a semi-log scale

versus time. Horizontal lines representing the Q10, Q50, and Q90 for

the basin of interest also were plotted. Qp is the mean daily streamflow

in cubic feet per second that is equaled or exceeded p percent of the time

based on the total period of record. At each point where the total stream

discharge was equal to one of the three flows of interest, an attempt was made

to determine the amount of base flow on that day.

Base flow estimates for storm events were determined by averaging the

results of two independent graphical methods. One method, the straight-line

method, is entirely objective and probably does not realistically simulate

actual base flow conditions during a storm. The second technique, referred to

herein as the S-curve method, is highly subjective but is more likely to

approximate actual conditions during storm events [Singh, 1968]. The S-curve

method indirectly accounts for seasonal differences in streamflow recession

rates reported by Farvolden [1971] and others [Singh and Stall, 1971] by

extrapolating the observed recession curves. By averaging the results of the

two methods, a balance between subjectivity and objectivity is achieved which

tends to mitigate the problems associated with both methods when considered

separately.

In the straight-line method, a line is drawn from the point of rise of the

storm hydrograph to a point on the graph N days after the peak, where N is the

time in days after the peak flow at which surface runoff is assumed to cease.

The value used for N is calculated for each basin using the formula N = A
0.2

where A is the area of the drainage basin in square miles. From the point on

the hydrograph where the flow is equal to the Qp of interest, a vertical

line is drawn to intersect the straight-line base flow approximation (see

Figure 2). The discharge at the point of intersection is recorded.
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To determine base flows under storm hydrographs using the S-curve method,

the recession curve of the storm being analyzed is projected "by eye" back

under the storm from a point N days after the peak to a point directly under

the inflection point of the falling limb of the hydrograph. Next, the

recession curve from the previous event is continued to a point directly under

the peak of the hydrograph. These two theoretical base flow "trend" curves

are connected by a straight-line resulting in an S-shaped curve with lower

base flows occurring under the rising limb of the hydrograph and higher base

flows occurring under the falling Limb. As in the straight-line method, a

vertical is drawn from the point on the hydrograph at which Qp occurs to the

S-curve and this value is recorded (see Figure 2).

The base flow estimate for the total flow of interest is equal to the

geometric mean of the two base flow values obtained by the two distinct

graphical methods. Base flow estimates are differentiated into rising-limb

and falling-limb categories. No attempt is made to estimate base flow values

for complex storm events. To expedite the analysis of some 1500 basin-years

of streamflow data and to develop reproducible results, the following

guidelines are followed:

1) If the time between the point of rise of a storm event and the peak of

the preceding storm event is less than N days, then both storm hydro-

graphs are considered to be too complex to be analyzed by the methods

used in this study.

2) Storm hydrographs which did not exhibit a "typical" falling limb were

not considered.

3) Recession curves resulting from long periods of little or no precipi-

tation are assumed to reflect 100% base flow and are tabulated as

falling limb base flow values.
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Figure 2 is an example of two months of streamflow data for the gaging

station on the Mackinaw River near Congerville. Three typical base flow

determinations are illustrated. Data tabulated for each point on the

hydrograph where the streamflow was equal to Q10, Q50, or Q90 include

the date of the peak, the streamflow probability (10%, 50%, or 90%), the

streamflow at the point of rise (QI), the flow at the peak (QPk), the flow

N days after the peak (QN), the base flow under the rising limb using the

straight-line method (QRL), the base flow under the falling limb using the

straight-line method (QFL), and the: base flow under the rising (QRS) and

falling (QFS) limbs using the S-curve method. The geometric means of the

rising-limb base flow estimates (QRA) and the falling-limb estimates (QFA)

were calculated for each event.

For each basin, the geometric means were grouped into rising- and falling-

limb values for each Q
p' and from these data the mean, standard deviation,

and cumulative frequency distribution of the base flows were determined.

These results are presented alphabetically by basin name in the Appendix in

the form of log10-probability curves for all of the basins analyzed in this

study.

The use of the base flow probability curves is explained in the following

example. Suppose that one wished to estimate the mean daily base flow at the

gaging station on the Mackinaw River near Congerville (USGS No. 567500) on a

day when the mean daily streamflow was 700 cubic feet per second (the 20% flow-

duration). If the stream were rising in response to a precipitation event,

then the rising-limb curve (see Appendix) would yield the best estimate. This

curve shows that on 50% of all days when the total discharge was 700 cfs and

rising, the base flow was likely to equal or exceed 260 cfs or 37% of the total
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Figure 2. Sample base flow separations
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flow. In most cases, this median value would be the desired estimate.

However, the curves also show that under the same condition, 9 times out of 10

the base flow would have been at least 47 cfs (7% of the total flow) and at

least 580 cfs (93% of the total flow) 1 of every 10 times.

If it were known that the stream was falling after the passing of a flood

peak or receding following a protracted period of dry weather, then the

falling limb curve (see Appendix) would give the best base flow estimates. At

700 cfs, the falling limb curve shows that the median (i.e., 50% probability

of occurrence) base flow is likely to be 690 cfs or 99% of the total flow. In

addition, there is a 90% probability that the base flow equaled or exceeded

230 cfs (33% of the total flow) and a 10% chance that the streamflow was

entirely base flow.

If it is not known whether the stream was rising or falling, then the base

flow can be estimated by averaging the median rising limb and median falling-

limb base flow values for the discharge of interest. In the case of our

example, this would yield an estimated median base flow of 475 cfs or about

68% of the total flow.

Mean base flow values and standard deviations are also presented on the

curves in the Appendix.

The averages of the median rising- and falling-limb base flow estimates

for each basin were divided by the drainage area and plotted on state maps to

determine the regional distribution of base flow at Q10, Q50, and Q90.

Regional divisions were drawn on the maps grouping areas with similar median

base flows. Brief descriptions and explanations of the features of each map

are presented in the Discussion section. Because of the numerous basin-

specific factors which determine base flow magnitudes and because of time

limitations in this 7-month study, detailed explanations of the regional

distributions of base flow values are outside the scope of this study.
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DISCUSSION

Previous studies by Leighton and others [1948] delineated 15 physiographic

regions in Illinois primarily based upon geomorphology. Factors such as soil

permeability, topography, and geohydrology were taken into account by Singh

[1971] in his modifications to the physiographic region boundaries. Singh's

work was based on a study of flow-duration characteristics for 120 stream

basins in Illinois. The resulting hydrologic divisions are illustrated in

Figure 3. Singh showed that the contrast between the hydrologic division

characteristics became less marked with lower rates of streamflow. He found

that the characteristic curves for each division were barely distinguishable

at flows greater than Q50. As a result, he emphasized the low flow

characteristics when determining his division boundaries.

Walton [1965] developed three base flow distribution maps for Illinois

based on the analysis of streamflow data for 21 basins. He chose only three

years of streamflow records for study. One was chosen to represent a year of

"above normal" precipitation, one a year of "near normal" precipitation, and

one a year of "below normal" precipitation. Hydrograph separations were

performed for each basin for the selected year of record using the same basic

technique applied in this study. The results were presented in the form of

base flow maps for each of the three stated precipitation conditions.

Although Walton used basically the same hydrograph separation technique

used in this investigation, the results of the two studies are not directly

comparable. Walton considered the entire range of streamflows for a given

year when calculating and mapping his base flow statistics. If we assume that

the magnitudes of flows for the selected years were normally distributed,
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Figure 3. Hydrologic divisions of Illinois (after Singh)
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Walton's maps would represent average Q50 base flows per unit area for those

years. From this reasoning, the most meaningful comparison between Walton's

maps and the maps developed in this study would be that for the Q50 base

flow distribution map and Walton's base flow values for a year of "near

normal" precipitation.

The regional distribution of median base flow values during high

streamflows (Q10) for the 78 study basins is shown in Figure 4. These

values are grouped into seven regions, A through G, based on regional base

flow similarities. A summary of the regional base flow values for Q10 is

presented in Table 2.

The regions with the highest base flow values are A and G in northeastern

and southeastern Illinois, respectively. Region A is dominated by permeable

surficial glacial deposits which result in less surface runoff, more recharge,

and rapid base flow increases following significant rainfall events.

Region G is a hilly area of little or no drift, however, permeable alluvial

sand and gravel deposits are found in the stream valleys. It is possible that

a great deal of the precipitation falling on the upland areas of this region

runs off until it reaches the alluvial stream valley deposits where it

infiltrates and reaches the stream as base flow. This area also has a higher

mean annual precipitation than the rest of the state [U. S. Dept. of Commerce,

1973] which would be conducive to higher streamflows and, therefore, higher

base flow magnitudes.

Regions C, D, and E, which constitute most of north-central Illinois,

yielded the next highest base flow values at Q10. These regions are

characterized by discontinuous surficial sand and gravel deposits associated

with glacial drift of Wisconsinan age. Although relatively permeable, their

discontinuous and heterogeneous nature reduces the base flow yield from these

deposits and lengthens the base flow response time following precipitation

events.
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Figure 4. Distribution of median base flows during high
(10% frequency) streamflows



–20–

Table 2. Summary of Regional Base Flow Parameters for Q10.

Region

A
B
C
D
E
F
G

Median of median base
flows (cfs/mi2)

Range of median base
flows (cfs/mi2)

1.37
0.67
0.82
1.09
0.91
0.42
1.42

1.29-1.67
0.66-0.70
0.74-0.89
0.88-1.45
0.50-1.08
0.23-0.95
1.05-1.62

Regions B and F in extreme northwestern Illinois and southern Illinois,

respectively, have the lowest Q10 base flow values. Region B has relatively

low mean annual precipitation [U. S. Dept. of Commerce, 1973], is

topographically well drained, and predominately covered by thin relatively

impermeable loess deposits. These conditions tend to reduce the amount of

groundwater recharge and, subsequently, the base flow at high flow events

(Q10). Region F also is topographically well drained and is predominately

covered by clay. The very low permeability of the clay allows little

infiltration of rainfall and retards the movement of groundwater to create

long base flow response times following precipitation events.

The Q10 base flow regions described in this report agree only in a

general sense with the hydrologic divisions presented by Singh [1971]. This

is to be expected since Singh's divisions emphasized the streamflow

characteristics during low flows. The regions also are in general agreement

with the data presented by Walton [1965]. The differences are apparently due

to the fact that the base flow data in this study are specifically related to

streamflow discharge rate whereas Walton's data encompass the entire range of

streamflow for a given year.



–21–

Table 3. Summary of Regional Base Flow Parameters for Q50.

Region

A1

B
C2

D
E
F

Median of median base Range of median base
flows (cfs/mi2) flows (cfs/mi2)

0.34 0.30-0.51
0.22 0.17-0.29
0.14 0.11-0.19
0.21 0.19-0.26
0.06 0.03-0.09
0.14 0.13-0.14

1Except Des Plaines River above Des Plaines (Station No. 529000).

2Except Crane Creek above Easton (Station No. 582500).

Figure 5 illustrates the regional distribution of base flow values at

median (Q50) streamflows. These data are grouped into six regions, A

through F. A summary of data for each region is presented in Table 3.

The distribution of base flow values at median streamflows is generally

similar to that for high streamflows. The area of highest base flow values is

region A, the heavily urbanized Chicago metropolitan area. The area of lowest

base flow values is, again, region E in southern Illinois. The remaining

areas, B, C, D, and F, yield relatively moderate base flow values at Q50

streamflow events. The base flow yield of basins in extreme northwestern

Illinois is relatively greater for Q50 events than for Q10 events compared

with the rest of the state. This probably occurs because the basins in this

area have a higher Q50 (total flow) relative to the rest of the state.

Conversely, the drainage characteristics and surficial permeability of the

soils in extreme southern Illinois have moderated the relative base flow

values at Q50 in this part of the state.

Two basins do not conform to the Q50 base flow regions presented in this

report. These are Crane Creek above Easton (USGS number 582500) and the Des

Plaines River above Des Plaines (USGS number 529000). Crane Creek above
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Figure 5. Distribution of median base flows during median
(50% frequency) streamflows
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Easton drains a portion of the Havanna lowland area in Mason County. This

area is known for its extensive sand and gravel deposits and abundant

groundwater resources. The presence of these deposits results in unusually

high groundwater discharges for this basin. Farvolden [1971] also noted

anomalous base flow characteristics for this basin in a study of streamflow

recession curve characteristics.

The Des Plaines River above Des. Plaines in region A yielded a Q50 base

flow value of 0.07 cfs/mi2 which is much smaller than the base flow values

for other basins in this region. Heavy groundwater pumpage from the shallow

dolomite aquifers in this basin may have reduced groundwater discharge to the

stream by lowering the piezometric surface near the river. Certain segments

of the river are influent at times, that is, water is migrating from the river

into the glacial materials and underlying dolomite aquifer. This may account

for the anomalously low base flow value at Q50.

The Q50 regions described in this report are, again, only in general

agreement with the hydrologic divisions described by Singh [1971]. Very good

agreement is noted between the regional distribution of base flow values at

Q50 and those presented by Walton [1965] for years of "near normal"

precipitation. However, Walton's values are higher suggesting that-the year

which he chose to represent "near normal" precipitation exhibited higher

streamflows compared to the 20 years of Q50 events analyzed for this study.

The areal distribution of mean base flow values during low streamflows

(Q90) is shown in Figure 6. These values are grouped into seven regions, A

through G. A summary of regional base flow values for Q90 is presented in

Table 4.

The accuracy of streamflow measurements during low flows can be affected

by many factors. Remarks in the USGS Water-Data Reports [1979] frequently

allude to poor discharge records during the winter months when low flows often
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Figure 6. Distribution of median base flows during low
(90% frequency) streamflows
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occur. Snowmelt and ice complicate low flow measurements during these months.

In addition, point-source discharges of sewage effluent and tile drainage

exert a greater influence on streamflow data during low flows because they

account for a larger proportion of total streamflow. The combined effects of

measurement problems, point-source discharges, and streamflow regulation on

low flow values suggest that less confidence be placed in base flow estimates

obtained at Q90 as compared to Q50 or Q10.

Base flow values at Q90 are high in region A in northeastern Illinois.

This part of the state exhibits the highest base flow values over the entire

range of streamflows. Conversely, region B exhibits high base flows at Q90

and regionally lower values at Q50 and Q10 base flows. The basins in this

region also have higher Q50's and Q90's than the rest of the state as

shown by "flatter" flow duration curves. Thus, if the percent of total flow

composed of base flow remained constant, the base flows of this region would

appear to increase relative to the base flow of basins that have steeper flow

duration curves. Discharge of groundwater from the creviced limestone and

deeper-lying sandstone units intersected by the stream and river valleys of

this area may contribute to the apparent reversal in relative base flow values.

Table 4. Summary of Regional Base Flow Parameters for Q90.

Region

A
B
C
1

D
E
F
G

Median of median base
flows (cfs/mi2)

Range of median base
flows (cfs/mi2 )

0.12 0.11-0.18
0.13 0.10-0.17
0.02 0.00-0.08
0.002 0.001-0.003
0.003 0.002-0.003
0.003 0.000-0.005
0.02 0.02-0.02

1Except Crane Creek above Easton (Station No. 582500).
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The areas with the lowest base flow values at Q90 are regions D, E, and

F. Regions E and F also exhibit relatively low base flow values at Q50 and

Q10. No explanation is offered for the low base flow values obtained in

region D at Q90 streamflows.

Moderate base flow values are noted for regions C and G. These areas are

similar to those regions of moderate base flow values at Q50 and Q10

except that they encompass a larger, area of the state.

A comparison of the Q90 base flow regions and the hydrologic divisions

of Singh, Figures 6 and 3, respectively, reveals similarities between the two

except for the central part of the state. As a whole, region C exhibits

relatively consistent Q90 base flow values, yet it appears that enough

variation was evident in Singh's data for this area to be divided into ten

hydrologic divisions. This may be accounted for by the fact that Singh

considered both the hydrologic and physiographic properties of each basin in

defining the hydrologic division boundaries. In this investigation, regions

were delineated solely on the basis of base flow characteristics. Thus, areas

with similar hydrologic characteristics but different physiographic traits

would be considered one region in this study but several distinct divisions

under Singh's criteria.

No meaningful comparison can be made between the Q90 base flow

distribution and Walton's map of groundwater runoff for a year of "below

normal" precipitation because of significant differences in the methods of

analysis that were discussed at the beginning of this section.
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CONCLUSIONS

1) Base flow probability curves which can be used to estimate base flow

for a given streamflow were developed for 78 watersheds in Illinois

using historical streamflow records. Each study basin was between 25

and 1000 square miles in drainage area and had a minimum of 10 years

and maximum of 20 years of mean daily streamflow measurements. Base

flow was determined at high streamflows (Q10), median streamflows

(Q50), and low streamflows (Q90) for each basin. Base flow

statistics were calculated for rising-limb values, falling-limb values,

and combined values. The portion of total streamflow obtained from

groundwater base flow increases as the total flow decreases. In 12

basins, the Q50 streamflows are all base flow 50 percent of the time

for the falling limb. In almost all basins, the Q90 streamflows are

all base flow 50 percent of the time for the falling limb (see

Appendix).

2) The combined median base flow values determined at Q10, Q50, and

Q90 streamflow events were plotted and regional divisions determined.

In general, the median base flow values at the three streamflow

frequencies studied were highest in northeastern Illinois and lowest

in the claypan regions of southern Illinois. However, because of

variations in relative streamflow magnitude, the effects of topo-

graphy, soil permeability, surficial geology, climatology, and other

physical factors, the regional distribution of median base flow is

different for each streamflow duration.

3) The regional divisions were compared to each other and to previous

work by Singh [1971] and Walton [1965]. The distribution of median

base flow values at the Q90 streamflows generally agrees with the
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hydrologic divisions presented by Singh [1971]. The distribution of

values at Q50 streamflows generally agrees with that presented by

Walton [1965] for a year of "near normal" precipitation.

4) The statistical analysis of base flow data presented in this study

is more descriptive and represents a more comprehensive approach

than previous work. Use of data presented in this study will result in

better informed decisions with respect to management of instream uses

and the regulation of point and nonpoint discharges to each basin

studied.

The graphical base flow separation procedure employed in this study

produces reasonable estimates of base flow values for the basins

studied. It is more practical than analytical or empirical methods

when large numbers of basins and long periods of historical stream-

flow records are analyzed.
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RECOMMENDATIONS

1) The study of groundwater contribution to streamflow in Illinois should

be expanded to include stream basins greater than 1000 square miles in

area to better define the areal distribution of base flow on

a statewide basis.

2) The effects of urbanization, point-source sewage effluent, tile

drain discharges, and meltwater runoff on base flow estimates during

periods of low flow need to be studied in greater detail. This

additional information is needed if the base flow data presented in

this report are to be successfully utilized to accurately determine

the effects of non-point sources of pollution on stream water quality.

3) Experience suggests that base flow estimates using graphical methods

are highly sensitive to the choice of N, the time lag between the peak

of the storm hydrograph and the cessation of surface runoff. The use

of an arbitrary value of N = A0.2 gives consistent and reasonably

accurate results. For the purpose of regional comparison the selection

of N is not important: however, other methods for determining this

time lag should be investigated. Ideally, these methods should require

a minimum of additional information, as opposed to those methods which

require historical records of water level fluctuations in nearby wells

or electrical conductivity in the stream. Methods not requiring

additional information would allow their application to historical

streamflow records for basins where such information is not available.

4) Many of the factors which affect base flow in streams can be expected

to change with time, especially temporal variation in precipitation and

those factors which are directly or indirectly related to human
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activities. Therefore, the base flow characteristics of the study

basins also are expected to vary with time. Studies have shown that

rapid urbanization occurring in some areas of the state is resulting

in significant increases in the low flows of certain streams [Singh

and Stall, 1974]. In light of this fact, the base flow data compiled

in this investigation should periodically be updated, perhaps every

five years, so that the base flow statistics are representative of

current conditions.

The base flow information compiled in this report should be studied

in greater detail in order to better define the basin characteristics

and mechanisms which control groundwater discharge to Illinois streams.
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APPENDIX: BASE FLOW PROBABILITY CURVES
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