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Introduction 

This atlas presents patterns of 1951-80 mean precipitation, temperature, 

and heating- and cooling degree days data for the Upper Midwest and High 

Plains states of the North Central region. These analyses are prepared from 

observations of National Weather Service Cooperative and First Order Station 

stations to obtain maximum data density, and summarized by the National 

Climatic Data Center, Asheville NC. 

All mean temperatures were corrected for the bias incurred as a function 

of the time of observation, if other than midnight-to-midnight. The correc­

tion for time of observation biases are important because First Order Stations 

calculate daily mean temperatures between the hours of midnight to midnight, 

whereas most cooperative observers take their observation at an hour con­

venient to their schedule, but maintaining the same hour of observation for 

several years. When maximum and minimum thermometers (read once per day) are 

read near the time of the occurrance of maximum daily temperature, mean tem­

peratures for a week, month or longer, are positively biased (from a midnight 

reading) by up to about 3.6F (2C), depending on location, altitude of the sta­

tion, and time of year (see, e.g., Mitchell, 1958; Baker, 1975; Nelson et al., 

1979; Dale et al., 1983; Blackburn, n.d.; Head, 1985; Karl et al., 1985). 

When the maximum and minimum thermometers are read near the time of minimum 

daily temperature, mean values are negatively biased by up to about 1.8F (1C), 

again depending on location, altitude of station, and time of the year. These 

biases can therefore introduce errors of several degrees which can impact stu­

dies of temporal temperature change, or spatial studies which compare mean 

temperatures across a region. Hence, the isotherms presented herein are based 

on mean temperatures corrected for the time of observation, i.e., corrected to 
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a midnight observation. 

The Data 

The mean temperatures, heating- and cooling-degree, and precipitation 

data used for this study were obtained fom the National Climatic Data Center, 

Asheville NC, and represent normal (mean) data for all available stations from 

1951-1980. A total of 562 useable data sets were obtained for the 12 states, 

23% of the observations were taken between the hours of 2300 and 0200 local 

time, none between 0300 and 0600, 12% between 0700 and 1100, 57% between 1200 

and 1800, and 8% between 1900 and 2200 local time. Data were available for 

another 322 sites, however, they consisted of observations taken at least at 3 

different hours of the day during the 30 years, and therefore no constant 

correction could be applied and they were unuseable for the temperature study. 

However, all 884 stations were used for the analysis of precipitation. Sta­

tion histories provided information as to when observations were made at each 

station for the 30 years of record. 

Analysis Technique 

The basic goal of this atlas is to show the large scale features of 

regional temperature and precipitation, the former corrected to represent 

midnight-to-midnight observations. There are smaller scale features which are 

real but difficult to show on a chart of this scale: e. g., anomalies due to 

(1) topographic features of only a few kilometers extent, (2) small water 

bodies, or (3) the effect of moderate and large size cities. The present data 

base is insufficient to allow this detail in most circumstances. Therefore 

the following criteria were established to define the minimum scale of 
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analysis, and to give uniformity to the analysis. Temperature or precipita­

tion anomalies (identified either by closed or open contours) were not 

retained if the initial complete analysis was not supported by more than at 

least 5 adjacent stations, and unless the anomaly was clearly related to a 

topographic feature or near a large body of water. In addition, urban heat 

islands were apparent from data in or near large metropolitan sites of the 

region. The data density was too sparse, however, to permit either a clear 

definition of the shape, intensity, or the horizontal extent of the urban 

centers. Therefore, the effect of urban heat islands was not retained in the 

final analysis pattern, but the text below provides guidelines for estimating 

in-city temperatures. 

Temperature Analyses and Discussion 

The observations from large cities permitted a comparison of urban tem­

peratures to the regional values inferred from the isotherm analysis, to 

evaluate the magnitude of the urban effect. Differences were determined for 

the following cities for January, April, July and October: Fargo ND; Pierre 

SD; Omaha NE; Topeka KS; Minneapolis MN; Des Moines 1A; Kansas City MO; St. 

Louis MO; Milwaukee WI; Chicago IL; Detroit MI; Indianapolis IN; Cincinnati 

and Cleveland OH. Differences between monthly mean temperatures of urban 

areas with populations greater than 200,000 are presented relative to the 

urban population (1960 census) in Fig. 1. Excluding Chicago and Detroit, a 

linear trend is apparent, where an increase of 100,000 population is related 

to a mean temperature increase of 0.122C (0.219F). The equation is: 

Urban temp anomaly ( C) = 0.012 popl'n - 0.114 
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Fig. 1. Relationship of urban temperature anomaly and urban population. 
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where the population is given in thousands. The correlation coefficent for 

this relationship is 0.786. The resulting increase to the mean maximum and 

mean minimum temperatures is 0.078C (0.143F), and 0.106C (0.190F) per 100,000 

population increase, respectively. These data suggest that the urban minima 

are elevated to a greater degree than the maxima, resulting in a decreased 

diurnal range. When Chicago and Detroit are added to the data population, the 

slopes of the linear relationship are decreased markedly, i.e., a given popu­

lation yields an urban temperature anomaly substantially less than that 

derived from the cities other than Chicago and Detroit. This is due to the 

fact that the populations used in the present study represented that of the 

city alone, whereas the urban temperature anomaly responds to the impact of 

the population of the metropolitan area, i.e., urban plus suburban. A similar 

relationship was found between population and mean minimum and mean maximum 

temperatures, however, the correlation between population and temperature ano­

maly declined from about 0.79 (between mean temperature and population) to 

0.60 and 0.53 (for minimum and maximum temperatures, respectively, and popula­

tion). 

The temperature analyses proceeded by first noting the midnight observa­

tions, and complementing these values as possible with observations from other 

times of the day, first correcting them for the time of observation bias 

referenced above. This method provided an average of 47 useable stations per 

state (range: 34 to 64). 

The large scale patterns of isotherms (Figs. 2-14, with units in 

Fahrenheit in block numbers and Celsius in italics) are similar to others pub­

lished for earlier 30-years periods (Environmental Data Service, 1968), how­

ever some cooling was noted relative to temperatures from those published ear-
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Fig. 2. Mean temperature - Annual 
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Fig. 3. Mean temperature - January 

Fig. 4. Mean temperature - February 
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Fig. 5. Mean temperature - March 

Fig. 6. Mean temperature - April 
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Fig. 7. Mean temperature - May 

Fig. 8. Mean temperature - June 
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Fig. 9. Mean temperature - July 

Fig. 10. Mean temperature - August 
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Fig. 11. Mean temperature - September 

Fig. 12. Mean temperature - October 
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Fig. 13. Mean temperature - November 

Fig. 14. Mean temperature - December 
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lier, assuming that the earlier analyses were based on data observed at mid­

night. Meaningful small scale features are present on the present charts, 

some of which have not been noted previously. The mean annual isotherms (Fig. 

2) lie essentially east-west, except for cooler state-scale pools located over 

southwestern and northeastern Minnesota, western Nebraska, Missouri and north­

ern Michigan. The maximum north-south gradient is about 20F (11.1C). 

From November (Fig. 13) through February (Fig. 4) the coldest tempera­

tures are noted over the eastern Dakotas and western Minnesota, exhibiting the 

cooling due to arctic intrusions from Canada. The warming impact over Lakes 

Michigan and Huron on mean annual temperatures of lower Michigan is apparent. 

The mean temperature difference from north to south over the region in winter 

is about 35F (19.4C). 

That colder temperatures are observed in the central part of the region 

in winter (as opposed to the west or east), is noted from the patterns of 

isotherms from December (Fig. 14) through February (Fig. 4). The warming 

influence of the Great Lakes is also apparent during these months. The degree 

of warming appears to be on the order of 2 to 4F (1.1 to 2.2C) over distances 

of about 40 miles (64 km) near the shorelines. The temperature difference 

from the eastern extremity of the mapped region to the central part along any 

line of latitude is about 2 to 3F (1.1 to 1.7C). 

From March (Fig. 5) through November (Fig. 13), on the other hand, the 

isotherms exhibit a northward extension in the central part of the region, and 

the north to south temperature gradient is reduced to only 12 to 14F (6.7 to 

7.8C) over the region. The magnitude of the temperature difference from the 

eastern part of the region to the center is 6 to 8F (3.3 to 4.4C) at latitudes 

greater than about 42N, and and about 2 to 4F (1.1 to 2.2C) at latitudes less 
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than about 42N. A cool pool of air is noted over Missouri from April (Fig. 6) 

through October (Fig. 12). Apparently, this is a function of altitude , i.e., 

the Ozarks in southern Missouri. A clear northward expension of isotherms is 

noted over Nebraska and the Dakotas during these months as well, reaching its 

greatest prominance in August. The cooling influence of the Great Lakes is 

apparent, being greatest along the Minnesota shoreline of Lake Superior, the 

Great Lake with the coldest mean surface temperatures. 

January, April, July and October distributions of mean maximum and mean 

minimum temperature are presented in Figs. 15-18, respectively. The patterns 

are very similar to those shown in the mean monthly temperature charts, and 

show that the mean diurnal temperature variation is about 20 to 22F (11.1 to 

12.2C) in winter and about 24F (13.3C) in summer. 

Heating- and Cooling-Degree Day Analyses 

The mean distribution of annual heating degree days is presented in Fig. 

19 (in units of Fahrenheit degree days on the left and Celsius degree days on 

the right). The total impact, of course, is due to the Mean heating degree-

days vary from about 4,000 (F) in the southern part of the region to more than 

10,000 (F) in the north. The effect of Lake Michigan on lower Michigan is 

apparent, and results in a 3 to 5% reduction in the annual total. Mean annual 

cooling degree days are presented in Fig. 20 (again in both Fahrenheit and 

Celsius degree day units). Within the 12 state region, cooling degree days 

(in excess of 50 per month) are only accummulated from May through September 

in the mean. The pattern of mean annual cooling degree-days is similar to the 

mean isotherm patterns of summer monthers. Annual accummulations vary from 

about 150 (F) in Upper Michigan to more than 1,600 (F) in southern Kansas. 

The moderation of Lake Michigan on lower Michigan is again apparent, with the 
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Fig. 15. Mean maximum temperature (a) and mean minimum temperature (b) 
for January 
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Fig. 16. Mean maximum temperature (a) and mean minimum temperature (b) 
for April 
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Fig. 17. Mean maximum temperature (a) and mean minimum temperature (b) 
for July 
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Fig. 18. Mean maximum temperature (a) and mean minimun temperature (b) 
for October 
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Fig. 19. Mean heating degree days - Annual 

Fig. 20. Mean cooling degree days - Annual 
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magnitude of the impact being about the same in absolute terms (200 to 300 

degree-days), but the percentage change now being about 25%. 

Precipitation Analyses and Discussion 

The charts showing mean monthly precipitation (liquid equivalent) are not 

systematically corrected for the time of observation. A potential error, 

believed to be minor, is introduced for monthly totals (depending upon the 

hour of observation) because the recorded observation of the first and last 

days, respectively, of each month potentially could include precipitation 

which actually fell during the last day of the previous month or during the 

first day of the month after the day in question. We suggest that this error 

self-cancels in the long term. The error to observations made at times other 

than midnight will most likely be greatest during spring and fall months, when 

the monthly precipitation is increasing and decreasing most rapidly, respec­

tively. However, a systematic mean correction cannot be calculated since pre­

cipitation is a temporally (and incidently, spatially) discontinuous function. 

The mean values presented herein represent an analysis of mean monthly totals 

based on 1951-80 data from all 884 reporting stations. 

The mean annual and monthly patterns of precipitation are presented in 

Figs. 21-33 (units of inches in block numbers and millimeters in italics). 

During the cooler months of the year (November through March) precipitation 

within the region generally decreases from about 4 inches per month (100 mm) 

in southeastern Missouri to 0.5 inch (13 mm) or less per month over the Great 

Plains. The precipitation enhancement downstream of the Great Lakes is most 

apparent in October through January, being primarily noted along the northern 

near-shore of upper Michigan, the western near-shore of lower Michigan, and 

northern Ohio. These areas receive as much as 50% (about 1 inch or 25 mm) or 
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Fig. 21. Mean precipi tat ion - Annual 
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Fig. 22. Mean precipitation - January 

Fig. 23. Mean precipitation - February 
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Fig. 24. Mean precipitation - March 

Fig. 25. Mean precipitation - April 
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Fig. 26. Mean precipitation - May 

Fig. 27. Mean precipitation - June 
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Fig. 28. Mean precipitation - July 

Fig. 29. Mean precipitation - August 
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Fig. 30. Mean precipitation - September 

Fig. 31. Mean precipitation - October 
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Fig. 32. Mean precipitation - November 

Fig. 33. Mean precipitation - December 
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more monthly precipitation than a location 50 miles (90 km) further inland. 

During summer (June, July and August), the mean monthly patterns become 

much less spatially continuous, with an area of relatively high precipitation 

developing from Missouri northeastward. It persists through October although 

it begins to decrease its latitudinal extent after August, reaching the winter 

pattern in November. As with the isotherms over Missouri and northward, pre­

cipitation in this area is related to the increase of the surface elevation 

above sea level, a feature which enhances precipitation. Because summer pre­

cipitation results from convective (showers and thunderstorms) precipitation, 

the amount of precipitation received at any one location does not typically 

correlate well with the amount received at a nearby station (perhaps only a 

few miles away). Because of this phenomenon, the isohyets in summer are 

rather more spatially discontinuous than those of winter. Precipitation 

decreases from 3 to 4.5 inches (76 to 114 mm) in the southeast to about 1.5 

inches (38 mm) in the west. Precipitation is diminished near and especially 

downstream of the Great Lakes in summer, although the magnitude of the effect 

is reduced from that noted during winter. 
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